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This paper addresses the problem of laminar flow with fully developed velocity and with 
developing temperature in a circular pipe with either uniform wall temperature or uniform 
wall heat flux. Invoking the method of lines, the applicable energy equation accounting 
for constant properties has been discretized in the axial direction only. As a result of this, 
the transformed boundary value problem represented by a single ordinary differential 
equation where the radius is the independent variable was reduced to a system of algebraic 
equations and solved numerically. This simple technique applied to the case of uniform 
wall temperature is parallel to that used by Lrv~que, and the comparisons between both 
approaches are in good quantitative agreement. Predictions for the extended case of 
uniform wall heat flux are in accord with the exact solutions as well. Multiple discretizations 
of the energy equation in the axial direction are directly related to the first and the second 
order terms in the so-called Lrv~que series using perturbation analysis. Both procedures 
yield fairly accurate results when compared with the solutions provided by the truncated 
L~v~que series. The proposed methodology exhibits a peculiar analogy with the conduction 
heat transfer mechanism along a disk fin placed perpendicular to the fluid stream. 
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I n t r o d u c t i o n  

The situation of a hydrodynamically developed and thermally 
developing flow in an isothermal circular pipe constitutes a 
historical problem in the theory of laminar forced convection. 
In 1928, Lrv~que 1 attempted to solve this problem by using a 
similarity transformation technique based on the flat plate 
concept. His idea relied on the hypothesis that the thermal 
boundary layer was thin compared to the hydrodynamic 
boundary layer inside the pipe. Correspondingly, Lrv~que's 
method is valid in the thermal entrance region of the pipe very 
close to the origin of the heat exchange section. 

Some extensions of the Lrvrque solution has been reported 
by Mercer, 2 Wors~e-Schmidt, a Newman, 4 Richardson, 5 and 
Shih and Tsou. 6 These authors solved the governing energy 
equation by a perturbation analysis. This procedure gave rise 
to the so-called Lrv~que series in the convective heat transfer 
literature. Mercer obtained the first two terms analytically and 
the next two terms numerically. Worsoe-Schmidt presented in 
closed form up to the first-order term and higher-order terms up 
to n = 6  numerically. Newman found an analytical solution 
up to second-order terms and Richardson extended his analytical 
procedure up to third-order terms. Shih and Tsou were able 
to extend Newman's solution up to fourth-order terms utilizing 
numerical techniques. In addition to these investigations, recent 
studies on this subject have been reported by Huang et al. 7 
and by Gottifredi and Flores. a Both papers resort to rather 
cumbersome mathematical procedures that necessitate the 
numerical evaluation of intricate functions. 

In light of the foregoing discussion, the objective of the 
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present work is to provide an approximate, but very simple 
solution for the problem of thermal entrance exposed to uniform 
wall temperature and its ramifications in the region of validity 
envisioned by the original work of Lrv~que. Another related 
problem that deserves to be examined here is the situation 
involving uniform wall heat flux. To accomplish these goals, 
the applicable energy equation is first transformed into an 
ordinary differential equation by discretizing the axial derivative 
within the framework of the method of lines. 9 The resulting 
boundary value problem governs the temperature profile of the 
fluid flow along a line (0 ~< r ~< R) placed at a certain axial station 
downstream in the pipe. Its solution may be obtained either in 
closed form or numerically. 

One peculiarity of the transformed boundary value problem 
is that it is analogous to the formulation describing steady-state 
conduction along a disk fin having the wall boundary conditions 
imposed at its extreme. 

Furthermore, possible refinements of this procedure are also 
discussed, giving rise to the utilization of two and three 
consecutive lines in the downstream part of the pipe. Thus, it 
can be expected that the approximate solution will improve as 
the number of lines increases. In a sense, these extensions are 
comparable with the calculations of first- and second-order 
terms in the Lrv~que series using perturbation analysis, but 
without necessitating the evaluation of intricate functions. 

Prediction of the mean bulk temperature distribution for case 
( ~  shows good agreement with the original L~v~que solution 
and its generalized series up to second-order terms. Further 
comparisons involving higher-order terms are straightforward, 
but were not performed here. Additionally, calculations of the 
wall temperature distribution were presented for case (~). Even 
with only one line, numerical results show trends which are in 
accord with the exact solution for the entire region of thermal 
development. 
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P r o b l e m  s t a t e m e n t  

Under the assumption of constant properties and fully developed 
laminar velocity, the growth of the thermal boundary layer in 
a circular pipe is characterized by the following set of equations. 

Case Q) : 

( 1 - ~ )  

c~O 020 1 ¢90 
- ÷ ( 1 )  

OX ~,r2 ,r 0,r 

0=0 ,  X = 0  (2) 

dO 
- -=o ,  ,r=0 (3) 
~,r 
0 =  1, q =  1 (4) 

where the dimensionless temperature, 0, is given by 

O= (T-- Tw)/(T e -  Tw) (5) 

Case (~) 

(1 - ,r  e) 
&b 02~b l O~b 

- - -  + (6) 

4 = 0 ,  X = 0  (7) 

04, - o ,  ,r=o (8) 
O,r 

c~4~ = 1, q = l  (9) 
d,r 

where the dimensionless temperature is now 

dp = k ( T -  Te)/qwR (10) 

The thermal quantities of interest in the above-mentioned 
problems include the mean bulk temperature distribution 

Ob (or tbb)=4 _t'd 0 (or tk)(1 _,r2)q dr/ (11) 

For Case (~  : 

the mean Nusselt number distribution 

Nu = - In Od2X (12) 

For Case (~): 

the wall temperature distribution 

~b w = q~(1, X) (13) 

In addition, the local Nusselt number distribution is another 
quantity that is usually reported in problems of this nature. 

N u m e r i c a l  m e t h o d o l o g y  

Equations 1 and 6 will be systematically reformulated, invoking 
a hybrid method of solution called the method of lines. 9 In 
general terms, this method seeks to replace a partial differential 
equation in two independent variables by an appropriate system 
of ordinary differential equations in one of these variables. 
Specifically, for a partial differential equation of parabolic type 
like Equations 1 and 6, a direct application of the method 
requires the replacement of the radial derivatives by suitable 
finite-difference analogs, while retaining the axial derivatives as 
continuous. Correspondingly, depending on the number of 
radial intervals selected, this simple procedure usually leads to 
a system of ordinary differential equations of first-order subject 
to the entrance boundary conditions. 

Conversely, instead of adopting the above-mentioned tradi- 
tional approach, we have explored a variant of the method of 
lines in this paper. In this alternative approach, the axial 
derivatives in Equations 1 and 6 have been expressed in finite- 
difference form, while the radial derivatives are maintained in 
continuous form. Accordingly, this rather crude approach 
yielded a differential-difference equation for each case examined, 
which is valid at a line (0 ~< r ~< R) drawn at a fixed axial station, 
say X D along the pipe. Hence, this transformed boundary 
value problem describes approximately the thermal behavior 
of the fluid flow along this particular line in the cross-section 
of the pipe. In other words, this simple approach allows for an 
approximate calculation of the development of the thermal 
boundary layer at a certain axial station, X1, inside the pipe. 

One stat ion (one l ine) 

Case (~) : 

Using a backwards finite-difference analog for the axial deriva- 
tive in Equation 1 results in the following differential-difference 

N o t a t i o n  

D Pipe diameter 
h Convection coefficient 
k Thermal conductivity 
Nu Nusselt number, hD/k 
Pe Peclet number, riD~or 
qw Wall heat flux 
r Radial coordinate 
R Pipe radius 
T Temperature 
/.7 Mean velocity 
x Axial coordinate 
X Dimensionless axial coordinate, x/RPe 

Greek letters 
ct Thermal diffusivity 
t/ Dimensionle§s radial coordinate 
0 Dimensionless temperature for case (~), 

( T -  Tw)/(T e -  Tw) 
~b Dimensionless temperature for case (~), k ( T -  Te)/qwR 

Subscripts 
b Mean bulk 
e Entrance 

(~) Wall heat flux 
(~  Wall temperature 
w Wall 
1 First station 
2 Second station 
3 Third station 
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equation 

d201 1 dO 1 1 
I-- -r/z)01 =0  (14) 

dr/2 r/ dr/ AX(1 

This equation, which incorporates the entrance boundary 
condition of Equation 2 already, is valid at an axial station 
X = X  1 (see Figure l(a)) and is subject to the radial boundary 
conditions 

d01=o, r/=O (15) 
dq 

01=1, r / = l  (16) 

Case (~): 

Similarly, for this situation Equation 6 may be applied to station 
X 1 (see Figure l(a)), resulting in an equation identical to 
Equation 14, but in terms of q~. This becomes 

dZq~l 1 dq~l 1 
I- (1 -- r/z)(jb 1 = 0  (17) 

dr/2 r/ dr/ AX 

The relevant boundary conditions are given by 

d~Pl - - = o ,  r/=o (18) 
dr/ 

pipe wall 

× 
1(t 

f irst  
(a)  station 

~ol' ~x -I-I-- 
D . . . .  

X Xl 

first 
(b) station 

X X I X z 
first second 

(C) station station 

Figure 1 

pipe wall 

6X 

X z 

second 
station 

pipe wall 

6 X  

X 3 
third 
station 

d61 
- 1, r / =  1 (19)  

dr/ 

Resul ts  

Actually, the set of Equations 14-16 and 17-19 may be solved 
analytically or numerically. Details of the numerical calculations 
may be obtained by the subroutine PASVA310 utilizing 20 
uniform intervals. These solutions provide the temperature 
profiles at any axial station X 1 in the thermal development 
region. In turn, these profiles combined with Equations 11 and 
13 supply the mean bulk temperature and the mean Nusselt 
number respectively at each particular station XI. 

Computed results of 0 b for (~) are presented in Table 1 
under the heading stating 1 line. A comparison between these 
predictions and the results of the Graetz series recalculated by 
Shah 11 with 121 terms yield fairly accurate agreement. The 
error at X = 10-s is only 0.09%. Far  downstream at X = 10-2, 
the error is 2.27%, while the corresponding error given by 
L6v6que solution is of the order of 3%. At this juncture, it 
should be mentioned that it is traditionally stated that the 
classical L6v6que solution gives excellent predictions for the 
thermal entrance region where 0 < X < 10- 2.4.12 

Additionally, values for the wall temperature for (~) calcu- 
lated with 1 line are illustrated in Table 2. Here again, the basis 
for comparison purposes is the series solution reevaluated by 
Shah 11 retaining 121 terms. At X =  10 -4, the discrepancy is 
15.48% and it is drastically reduced as X increases reaching a 
value of 4.29% at 1.4 x 10-1. Nevertheless, although the errors 
may look quite large, the absolute deviations at these two 
locations are 0.01 and 0.04 units respectively. 

T a b l e  1 Comparison of mean bulk temperature for ( ~  

0.00 L6v6que series [4]  Method of lines 

Graetz 
series 

X 1-11] 1 term % e  2 terms % e  3 terms % e  1 line % e  2 lines % e  2 lines* % e  3 lines % e  

1 0 - 5  0 . 9 9 8 1 4  0 . 9 9 8 1 4  
6 x 10 -5 0.99391 0.99391 
10 -4 0.99147 0.99147 
6 x 10 -4 0.97251 
10 -3 0.96175 0.95930 0.25 0.96170 0 0.96175 0 
6 x 1 0  -3 0.88060 0.86462 1.81 0.88002 0.07 0.88050 0.01 
10 -= 0.83622 0.81110 3 0.83510 0.13 0.83606 0.02 
1.2 x 10 -= 0,81690 

0.99902 0.09 0.99901 0.09 
0.99525 0.13 0.99502 0.11 0.99663 0.27 0.99493 0.10 
0.99295 0.15 0.99255 0.11 
0.97568 0.33 0.97431 0A9 0.98190 0.97 0.97381 0.13 
0.96605 0.45 0.96417 0.25 0.97487 1.36 
0.89408 1.53 0.88795 0.83 0.92472 5.01 0.88570 0.58 
0.85521 2.27 0.84652 1.23 0.89899 7.51 0.84330 0.85 
0.83844 2.64 0.82857 1.43 0.88813 8.72 0.82494 0.98 

* based on a backwards formulation with three points 
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Table 2 Comparison of wall temperature for (~) 

M e t h o d  of lines 
Graetz 

series 
X [11]  1 line % e  A 2 lines % e  A 2 lines* % e  A 3 lines % e  A 

1 0 - '  0 . 0 5 8 3 5  0 .06738  15 .48  0 . 0 0 9 0 3  0 . 0 6 8 2 2  16.91 0 .00987  0 .06577  12 .72  0 .00742  0 .06854  17 .46  0 .01019  

10  -= 0 . 1 3 0 4 8  0 .12362  5 .26 - 0 . 0 0 6 8 6  0 . 1 2 9 1 6  1,01 - 0 . 0 0 1 3 2  0 .12803  - 1 , 8 7  - 0 . 0 0 2 4 5  0 .13123  0 .57 0 .00075  

10  -= 0 . 3 0 6 8 9  0.27921 - 9 . 0 2  - 0 . 0 2 7 6 8  0 . 2 9 3 8 6  4 .25 - 0 . 0 1 3 3 3  0.29381 - 4 . 2 6  - 0 . 0 1 3 0 8  0 .29905  - 2 . 5 5  - 0 . 0 0 7 8 4  

5 x 1 0  -= 0 .60000  0 .55359  - 7 . 7 4  - 0 . 0 4 6 4 1  0 .57790  3 .68 - 0 . 0 2 2 1 0  0 .57705  - 3 . 8 3  - 0 . 0 2 2 9 5  0 .58652  - 2 . 2 5  0 .01348  

10 -1 0 .84308  0 . 7 9 4 0 5  - 5 .82 - 0 .04903  0 .81934  2 .82 0 . 0 2 3 7 4  0 .81500  - 3 .33 - 0 .02808  0 ,82800  - 1 .79 - 0 .01500  

1.4 x 1 O- a 1 .01288  0 .96946  - 4 .29 - 0 .04342  0 .99343  1 .92 - 0 . 0 1 9 4 5  0 . 9 8 5 0 0  2 .75 = 0 ,02788  1 .00119  - 1 .15 - 0 .01169  

* based on  a backwards  fo rmu la t ion  w i t h  three points 

F u r t h e r  c o n s i d e r a t i o n s  

Although the computed results based on a one line approxi- 
mation are encouraging and indeed compatible with those 
furnished by L6v~que solution in its region of validity (X ~< 10-2), 
it seems convenient to explore some natural refinements that 
do not necessitate the use of special functions. In order to 
accomplish this goal, first the axial coordinate X will be divided 
in two equal intervals, AX, defining two consecutive lines (see 
Figure l(b)). Furthermore, the situation involving three equal 
intervals AX giving three consecutive lines will be also examined 
(see Figure l(c)). At this point, it should be said that the idea 
behind this is to have an identical number of differential 
equations as that given by the extensions of the L6v~que 
solution using perturbation analysis. 

Two consecutive stations ( two lines) 

Case (~) : 

Rewriting Equation 1 at station X2=2AX (see Figure l(b)), 
the following differential-difference equation is obtained 

d202 1 dO 2 1 1 
q (1 - r/2)02 + (1 - ~/2)01 = 0 (20) 

T; dr/2 r/ dr/ AX 

employing the backwards formulation with two points for the 
axial derivative. In the preceding equation, 01 designates the 
temperature profile at the axial station X 1 in the forcing 
function. The applicable boundary conditions are given by 

dO2 = 0, r/= 0 (21) 
dr/ 

02 = 1, r/= 1 (22) 

Case (~): 

In light of the foregoing statement, the descriptive set of 
equations for this case is readily written as 

1 d~b 2 1 1 
d2¢2-- {" (1-r/2)¢2 + (1-r/2)$1 = 0  (23) 
dr/2 r/ dr/ AX SE 

d¢2 
=0,  r /=0 (24) 

dr/ 

dq~2 
- 1, r / =  1 (25)  

dr/ 

Three consecutive stations (three lines) 

Case (~) : 

The governing equation (1) specialized at station X 3 = 3AX (see 

Figure l(c)) becomes 

d203 1 dO 3 1 + 1  
- -  "1 (1--//2)03 (1 --r/2)02 = 0  (26) 
dr/2 r/ dr/ AX AX 

where the axial derivative has been replaced by a backwards 
formulation having two points. Here, 02 corresponds to the 
temperature profile associated to station X 2. The relevant 
boundary conditions are 

dO3 
- - = 0 ,  r /=0 (27) 
dr/ 

0 3 = 1, r/= 1 (28) 

Case (~): 

Utilizing the same procedure discussed previously, Equation 
26 is rephrased in terms of ~ giving 

1 dq~ a 1 1 
d2~3 1 t (1 - r/2)(~3 + (1 - r/2)t~2 = 0  (29) 
dr/2 /7 dr/ AX SE 

which is subject to the appropriate boundary conditions 

d$3 
- 0 ,  r/=O (30) 

dr/ 

d~b3 
=1,  r / = l  (31) 

dl/ 

Results 

The numerical solution of Equations 14-16 and 17-19 was 
based on standard finite-difference techniques, giving rise to 
a system of algebraic equations. As before, the number of 
preselected intervals for the analysis of two and three consecutive 
stations was 20. A simple computer program was prepared in 
order to handle these calculations in a systematic manner and 
the numerical values are tabulated in Table 1 for case (~) and 
in Table 2 for case (~), respectively. 

Case (~) : 

The error distribution utilizing two lines decreases gradually 
when compared with those using one line at the same stations. 
In particular, at X =  10 -2 the error is 1.23% using two lines. 
At the same axial position, the L6v~que series retaining two 
terms produces an error of 0.13 %. Similarly, the same tendency 
is manifested for the formulation accounting for three lines. 
Employing three lines, the calculated error at X = 1 0  -2 is 
0.98%, while a three-term L6v~que series has a discrepancy of 
0.02%. 

An anomalous situation is observed when two lines are used 
in conjunction with a backwards formulation accounting for 
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three points. It can be observed that the errors in the thermal 
development region are much larger than those related to a 
backwards formulation involving two points. 

Case (~): 

Using a grid consisting of two lines, the errors associated 
with the wall temperature are drastically reduced, except at 
X =  10 -4, where it increased slightly. For  the entire region 
tested 0 < X < 1.4 x 10-1, the average absolute deviation is in 
the vicinity of 0.015 units only. The local deviations show a 
decreasing behavior in the downstream direction. For  the same 
grid having two lines, an additional calculation was carried out 
utilizing a backwards formulation with three points. As can be 
observed, the errors of this approximation are larger than those 
based on a backwards formulation involving two points. The 
last situation analyzed corresponds to the approximation using 
three lines. As excepted, the distribution of errors is drastically 
reduced when compared with those given by the formulation 
of two lines, with the exception of X =  10 -4. At X = 10-1, the 
relative error is - 1.79%. For  the region examined, the average 
absolute deviation for the wall temperature is 0.01 units. 

Steady-state conductive analogy 
O n e  s t a t i o n  

A detailed examination of Equation 14 reveals its resemblance 
with the equation controlling a steady-state conduction process 
in a radial fin.13 In particular, we are dealing here with a disk 
fin placed normal  to a fluid stream inside a pipe and insulated 
on the other side. A uniform dimensionless temperature having 
a value 0 = 1 is imposed at its periphery for case (~). In addition 
to this, the equivalent convective coefficient is considered 
proportional to the laminar velocity profile, being a maximum 
at the centerline and dropping to zero at the extreme. The 
effective thermal conductivity of the disk fin is inversely 
proportional to the magnitude of the selected axial station X 1 
in the downstream region. 

Alternatively, the same concept applies for the case (~), but 
with the consideration that the disk fin has now a uniform 
peripherical heat flux, whose value in dimensionless form is 
d c~ l /  d~ 1 = 1. 

Two consecut ive stat ions 

The disk fin analogy explained for the situation involving one 
station still prevails here, but with the addition of a heat 
generation term that depends on X and r/. 

Three consecut ive stat ions 

Similarly, the steady-state process of the disk fin at station X3 
incorporates a heat generation term affected by X and r/. 

Conclusions 

One of the main findings that has emerged from the presentation 
of results is that the method of lines discretizing the axial 
derivative with one step gives essentially the same results than 
those invoking the L6v~que solution. In a mathematical context, 
this methodology leads to a system of algebraic equations at 
a particular axial station in the thermal development region, 
which may be solved in a straightforward manner.  On the other 
hand, L6v~que solution necessitates the use of special functions 
whose numerical evaluation is quite elaborate. The same 
contrasting patterns are observed when both procedures are 
extended to situations involving multiple stations with the 
purpose of improving the numerical results. As expected, 
accuracy must improve significantly as the number  of axial 
stations is increased. 
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